
Mosquito: Another One Bites the Data Upload STream

Stefan Richter Jens Dittrich Stefan Schuh Tobias Frey

Information Systems Group
Saarland University

infosys.cs.uni-saarland.de

ABSTRACT
Mosquito is a lightweight and adaptive physical design framework
for Hadoop. Mosquito connects to existing data pipelines in Hadoop
MapReduce and/or HDFS, observes the data, and creates better
physical designs, i.e. indexes, as a byproduct. Our approach is min-
imally invasive, yet it allows users and developers to easily improve
the runtime of Hadoop. We present three important use cases: first,
how to create indexes as a byproduct of data uploads into HDFS;
second, how to create indexes as a byproduct of map tasks; and
third, how to execute map tasks as a byproduct of HDFS data up-
loads. These use cases may even be combined.

1. INTRODUCTION
Hadoop is a popular data processing engine in the context of

cloud computing, NoSQL, and Big Data. In the past years, the
DB community has taught efficiency to Hadoop MapReduce and
its distributed file systems HDFS in several ways. An important
family of techniques has investigated on how to use better physi-
cal layouts [7], clustered indexes [3, 4], and adaptive indexes [13,
12]. Though these technique can always be implemented in a tradi-
tional way by using Hadoop MapReduce jobs to create indexes on
top of its file system HDFS — similar to a traditional DBMS using
a physical design engine on top of a file system, this approach has
a severe drawback: data is read and written several times across
the two layers. As HDFS is agnostic about Hadoop MapReduce,
considerable time is wasted doing things twice in the two layers
that could be combined effectively if the two layers were a single
layer. This is prohibitevly expensive in an environment handling
Petabytes of data. It makes physical design expensive. And it dra-
matically increases MapReduce job latencies, be it at data upload
or be it at MapReduce job execution. In the context of a distributed
system the separation of data storage and data processing into two
layers is a pain.

The reader might recognize this line of thought: it is a vanilla
software engineering argument from our DB courses: for highest
efficiency it is a great decision to get rid of all interfaces and lay-
ers and pack all code into a single monolithic block. However,
such a system becomes unmaintainable quickly. Especially if the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 12
Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

system is developed as an open source project by a large commu-
nity — like Hadoop. What happens if fundamental things change
in Hadoop’s code base? Who makes sure that the techniques we
taught to Hadoop will still work with the next release?

An obvious idea to fix this problem is the other extreme of a
system design: use many interfaces and layers. Whatever tech-
nique you want to teach to Hadoop, implement them in another
layer: make sure you implement them against system- or UDF-
interfaces [3, 9], i.e. whatever you do, stick to the existing inter-
faces. However, such systems quickly become inefficient. In addi-
tion, the impact of your optimizations is limited by the interfaces
that were provided by those systems in the first place, even when
using UDFs [3, 9]. Moreover, even though these approaches do
not need to touch the source code of the software layer underneath,
the limitedness of the system interfaces often forces you to reim-
plement considerable parts of its functionality. For instance, the
recently proposed [6] does not need to change HDFS. However, it
needs to reimplement failover, data placement, as well as load bal-
ancing. This reduces the role of HDFS to a simple local file system
with network access.

To fix this, in this demo we introduce a novel approach coined
Mosquito. Our system sits in-between the two extremes in the sys-
tem design space. We allow Mosquito to connect to data pipelines
and streams available on lower layers, be it HDFS or Hadoop MapRe-
duce. Yes, like this we break the layering of these systems at small,
yet clearly defined points. Yet, with this approach we are able to
reduce the maintenance effort of Mosquito to a minimum, but at
the same time: we are able to perform dramatic crosslayer opti-
mizations. These optimizations lead to order of magnitude runtime
improvements.

2. MOSQUITO OVERVIEW
Mosquito is a software framework allowing developers to easily

connect to data streams in Hadoop. Currently Mosquito supports
three major scenarios: (1) Aggressive Indexing, i.e. HDFS blocks
may be indexed as a side-effect of uploading data into HDFS. All
physical replicas of a logical HDFS block may be kept in different
sort orders; (2) Adaptive Indexing, i.e. HDFS blocks get indexed at
query time as a side-effect of query processing. For every incom-
ing MapReduce job a fraction of the HDFS blocks pertaining to a
file are indexed; and (3) Aggressive Map Execution, i.e. the map
phase of a MapReduce job may be executed as a side-effect of up-
loading data into HDFS already. The three scenarios may even be
combined.

2.1 Aggressive Indexing
Mosquito Aggressive Indexing allows users to efficiently create

different clustered indexes over terabytes of data as a side-effect of

http://infosys.cs.uni-saarland.de


Client HDFS
Data Upload

+ Clustered Index

Figure 1: Mosquito aggressive indexing as a side-effect of
HDFS data upload.

uploading their dataset to HDFS. Mosquito can support different
sort orders (and layouts), one for each physical replica of the data
without affecting Hadoop’s data placement and failover properties.
Like this Mosquito can fully emulate HAIL [4].

Overall, we will demonstrate that Mosquito indexes can dramat-
ically improve the runtimes of several classes of MapReduce jobs
while index creation is basically invisible to the user in terms of
upload time overhead. Figure 1 sketches the idea of a Mosquito
biting into the data upload pipeline: whenever a user uploads a new
dataset through the HDFS client, the data is partitioned into HDFS
blocks and those blocks are shipped and replicated to HDFS data
nodes for storage. Mosquito intercepts block storage. While HDFS
data blocks are loaded into main memory Mosquito creates user de-
fined indexes, typically one for each block replica, before actually
storing the reordered HDFS blocks on the data nodes.

2.2 Adaptive Indexing

HDFS MapTask
Map Input

+ Adaptive Index 

Figure 2: Mosquito adaptive indexing as a side-effect of a Map-
Task execution.

Mosquito Adaptive Indexing allows users to efficiently create
different clustered indexes over terabytes of data as a side-effect
of query processing. In contrast to adaptive indexing in main mem-
ory [5], for every MapTask we collect a subset of the HDFS blocks
and create full indexes on those blocks. In addition, again, this
also allows us to keep all replicas in sync and keep HDFS’ failover
properties. Like this Mosquito can fully emulate LIAH [13].

Our motivation for Mosquito adaptive indexing is a scenario where
users want to apply selections (using Mosquito annotations) on at-
tributes that where not indexed at data upload time. For example,
this can easily happen when the selection criteria are hard to pre-
dict in advance or whenever workloads change over time. Mosquito
adaptive indexing sits on top of Hadoop’s MapReduce job execu-
tion. The core idea is to create missing but promising indexes as
byproducts of full scans in the map phase of MapReduce jobs. Sim-
ilar to aggressive indexing, our goal is again to create additional
indexes without significant overhead on individual job runtimes.
Mosquito piggybacks on another procedure that is naturally read-
ing data from disk to main memory. This allows Mosquito to com-
pletely save the data read cost for adaptive index creation. Second,
as map tasks are usually I/O-bound, Mosquito can again exploit un-
used CPU time for computing clustered indexes in parallel to job
execution. Figure 2 illustrates the core concept of the Mosquito
adaptive indexing pipeline.

Client HDFS

MapTask

Data Upload

+ Map Input

Figure 3: Aggressive Map Execution as a side-effect of HDFS
data upload.

2.3 Aggressive Map Execution
Mosquito Aggressive Map Execution allows users to efficiently

run one or several map phases as a side-effect of uploading data
into HDFS. This means each data node receiving data to store al-
ready executes a MapTask on that data before writing it to disk.
This is interesting for cases where the map-functions to execute are
already known at data upload time. Like this Mosquito can be run
in ‘NoHadoop’-mode [11].

Mosquito Aggressive Map Execution allows users to execute
MapReduce jobs while uploading their dataset to HDFS. This means
that users can immediately start analyzing their data instead of wait-
ing for their initial upload to finish. Our Aggressive Map Execu-
tion is illustrated in Figure 3 and works on top of the HDFS up-
load pipeline as follows: (1) The user uploads her data with the
HDFS upload command and additionally provides one (or a set of)
MapReduce job(s) to execute on that data. (2) The client splits the
data into blocks and these blocks into packets. For each block,
the client sends those packets to the first data node for storage.
(3) On each data node, those packets are persisted on local disk
and forwarded to the next data node if applicable, just like in nor-
mal HDFS. However, in parallel, one data node that stores a block
replica is chosen by the job scheduler to reassemble this data block
from the packets in main memory and spawn a new map tasks for
the provided job. Since data block replicas are distributed over the
cluster, the scheduler can parallelize the tasks on the cluster similar
to normal Hadoop. Whenever a map tasks fails, it is rescheduled
after the upload phase was completed. As a result, our system can
save the complete read costs of the map tasks while preserving full
failover properties. (4) After the upload (and hence the map phase)
is completed, Mosquito runs a reduce phase as in normal Hadoop.
Notice, that Mosquito could also be used to chain multiple MapRe-
duce jobs, e.g. for iterative computations: in the end of a reduce
task, when the output of a job is written back to HDFS, the con-
secutive map task may already be executed using the technique of
Aggressive Map Execution.

We are currently evaluating this technique in more detail [11].

3. DEMONSTRATION AND USE CASES
Mosquito offers interfaces to plug user defined operations on top

of ongoing data movement in Hadoop clusters. As a result, the
Mosquito framework acts as a flexible platform that greatly simpli-
fies the realization of many optimization techniques for Hadoop’s
data storage and job execution pipeline, such as indexing, layout
transformation or ad-hoc job execution. In the following, we will
describe our demo setup (Section 3.1) and three use cases that
demonstrate possible Mosquito applications (Section 3.2).



(a) Dataset upload (b) Job execution

(c) Indexing status (d) Browse cluster information

Figure 4: Graphical User Interface of Mosquito

3.1 Demo Setup
In our demo, we compare the performance of our Mosquito ap-

plications to standard Hadoop in order to better understand the ben-
efits of using Mosquito. We use our local 10-node cluster at Saar-
land University. Each cluster node has two Intel Xeon E5-2407
2.20 GHz processor, 48GB of main memory and 2TB HDD. For
the different demo scenarios we visualize the performance with re-
spect to job runtimes and/or data upload times.

3.2 Use Cases
Mosquito emulating HAIL. In our first use case, we leverage
Mosquito to emulate HAIL [4]. The goal of this demo scenario
is to (i) illustrate how Mosquito can easily create several clustered
indexes in parallel to uploading a dataset to HDFS and (ii) to show
how such indexes can dramatically decrease the runtimes of selec-
tive MapReduce jobs. This scenario represents a typical analytical
use case, where the user wants to create one or more indexes on a
large dataset, e.g. a weblog, and afterwards exploits the indexes to
speed up queries. We invite the audience to specify the clustered
indexes to create and to compare the upload times for the weblog
dataset of Mosquito with the ones of standard HDFS. Then, the au-
dience can edit and enhance MapReduce jobs with Mosquito anno-

tations and run the jobs on the previously uploaded dataset. Finally,
we report the runtime improvements of Mosquito in comparison to
normal Hadoop MapReduce.
Mosquito emulating LIAH. In our second use case, we configure
Mosquito to emulate adaptive indexing as presented in LIAH [13].
In this scenario, we show how Mosquito can be used to realize plug-
gable adaptive indexing capabilities on top of Hadoop MapReduce.
In more detail, we show how Mosquito exploits running map tasks
to incrementally build missing indexes with minimal or no run-
time overhead per job. This approach proved useful in applications
where the query workload is unknown at data upload or changes
over time. Our Mosquito GUI, as shown in Figure 4, allows the
audience to edit and schedule sequences of annotated MapReduce
jobs. Additionally, the audience can configure runtime parameters,
such as the offer rate1. We plot the runtimes for the job sequence
executed on Mosquito and standard Hadoop. Thereby, the audience
can observe the gradual runtime improvement of adaptive indexing.
Furthermore, an index map visualizes the progress of index creation

1The offer rate defines the maximum percentage of data blocks
from the input dataset that can be indexing in parallel to a single
MapReduce job.



while executing the job sequence.
Mosquito running NoHadoop2. Our third use case for the Mosquito
framework is NoHadoop [11], an approach for ad-hoc job execu-
tion on top of data uploads to HDFS. With NoHadoop, users no
longer have to wait for their data being uploaded to HDFS be-
fore running their MapReduce jobs. Instead, they can immedi-
ately start running MapReduce jobs while their data is s being up-
loaded to HDFS. Consequently, NoHadoop eliminates the upload-
to-job time, which is the fundamental measure for the delay before
Hadoop can actually start to execute jobs on new data. We en-
courage the audience to benchmark Mosquito NoHadoop against
normal Hadoop for one or more jobs. Overall, we show the abil-
ities of Mosquito NoHadoop to reduce upload-to-job time as well
as total runtimes of typical MapReduce workflows dramatically.

4. RELATED WORK
One core principle of Mosquito is to plug in additional opera-

tions to existing data streams to eliminate redundant data access.
This idea is remotely related to shared scans [14, 10]. However, the
focus of shared scans is multi-query optimization, i.e. sharing input
data or results among queries with common sub-expressions rather
than sharing data streams across layers. Mosquito offers a much
more general interface to piggyback data streams of data-producing
processes (such as data uploads or task execution) in Hadoop to ar-
bitrary data-consuming processes (like indexing, arbitrary tasks or
layout optimizations). Thus, we see Mosquito as a framework to
integrate various optimizations easily and efficiently into Hadoop.
In Mosquito, shared scans are only one possible special case.

The recently proposed Cartilage [6] is a framework that aims to
provide a more flexible storage layer on top of HDFS along the
same lines as [8]. According to the authors of [6], the long term
goal is to give users full control over many aspects of data storage,
including partitioning, replication, layout, placement, and sort or-
ders. However, as explained in the Introduction, Cartilage needs
to reimplement fundamental HDFS features on a higher layer in-
cluding replication, failover, namenode, etc. Thus, even though
Cartilage does not change the source code of HDFS, this approach
needs to duplicate considerable parts of HDFS’s functionality and
restricts its role to a mere local file system with remote access.

The recently proposed Invisible Loading [1] gradually loads data
to a DBMS as a side-effect of a map task. Thus, [1] is another
proposal for a two-layer approach. On first sight this looks similar
to our Aggressive Indexing use-case of Mosquito (see Section 2.1).
However, there is a major difference: in Invisible Loading the data
is moved across systems from HDFS to a distributed DBMS. This
means the data is not only kept three times in HDFS, but possibly
also several times in the DBMS. In addition, the implications for
failover are unclear in that approach.

NoDB [2] provides query processing on top of raw text data. As
query processing on raw text is inefficient, that system creates po-
sitional maps to positions in raw text and/or creates a data value
cache to avoid text access at query time alltogether. All of this
is done as a byproduct of query processing. Again, similar to In-
visible Loading, this is another special case of populating another
system layer, i.e. PostgreSQL on top of a local file system, as a
side-effect of query processing. Hence, another appropriate name
for the NoDB-approach, which is implemented in the open source
DBMS PostgreSQL, might be ‘AdaptiveETL’. In contrast to NoDB
which focusses on this data loading use case, we provide a more
general framework for piggybacking on data streams. Moreover,
our main goal is to improve Hadoop MapReduce and HDFS rather

2Name inspired by http://youtu.be/fXc-QDJBXpw.

than single instance DBMSs. However, as Hadoop is actually often
used for ETL-style jobs, the two philosophies might be combined
in the long run.
Acknowledgments. Research partially supported by BMBF.

5. REFERENCES
[1] A. Abouzied, D. J. Abadi, and A. Silberschatz. Invisible Loading:

Access-Driven Data Transfer from Raw Files into Database Systems.
In EDBT, pages 1–10, 2013.

[2] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki.
NoDB in Action: Adaptive Query Processing on Raw Data. PVLDB,
5(12):1942–1945, 2012.

[3] J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty, and
J. Schad. Hadoop++: Making a Yellow Elephant Run Like a Cheetah
(Without It Even Noticing). PVLDB, 3(1):518–529, 2010.

[4] J. Dittrich, J.-A. Quiané-Ruiz, S. Richter, S. Schuh, A. Jindal, and
J. Schad. Only Aggressive Elephants are Fast Elephants. PVLDB,
5(11):1591–1602, 2012.

[5] S. Idreos et al. Merging What’s Cracked, Cracking What’s Merged:
Adaptive Indexing in Main-Memory Column-Stores. PVLDB,
4(9):586–597, 2011.

[6] A. Jindal, J. Quiané-Ruiz, and S. Madden. CARTILAGE: Adding
Flexibility to the Hadoop Skeleton. SIGMOD Demo, 2013.

[7] A. Jindal, J.-A. Quiané-Ruiz, and J. Dittrich. Trojan Data Layouts:
Right Shoes for a Running Elephant. SOCC, 2011.

[8] A. Jindal, J.-A. Quiané-Ruiz, and J. Dittrich. WWHow! Freeing Data
Storage from Cages. CIDR, 2013.

[9] A. Jindal, F. M. Schuhknecht, J. Dittrich, K. Khachatryan, and
A. Bunte. How Achaeans Would Construct Columns in Troy. CIDR,
2013.

[10] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N. Koudas.
MRShare: Sharing Across Multiple Queries in MapReduce. PVLDB,
3(1):494–505, 2010.

[11] S. Richter and J. Dittrich. NoHadoop: Three Extra Strong Indexes
and Four Map Phases to Go, Please! in preparation.

[12] S. Richter, J.-A. Quiané-Ruiz, S. Schuh, and J. Dittrich. Towards
Zero-Overhead Static and Adaptive Indexing in Hadoop. VLDB
Journal, 2013.

[13] S. Richter, J.-A. Quiané-Ruiz, S. Schuh, and J. Dittrich. Towards
Zero-Overhead Adaptive Indexing in Hadoop. arXiv:1212.3480
[cs.db], TR 12/2012.

[14] M. Zukowski, S. Héman, N. Nes, and P. A. Boncz. Cooperative
Scans: Dynamic Bandwidth Sharing in a DBMS. In VLDB, pages
723–734, 2007.

http://youtu.be/fXc-QDJBXpw
http://arxiv.org/pdf/1212.3480v1.pdf

	Introduction
	Mosquito Overview
	Aggressive Indexing
	Adaptive Indexing
	Aggressive Map Execution

	Demonstration and Use Cases
	Demo Setup
	Use Cases

	Related Work
	References

